wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - S1 0983-01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

S1– June 2017 – Markscheme

Ques	Solution	Mark	Notes
1 (a)	(If <i>A</i> , <i>B</i> are independent,)P($A \cap B$)= 0.2 × 0.3 = 0.06	B1	
	$(\text{Using P}(A \cap B) = P(A) + P(B) - P(A \cup B))$		
	EITHER $P(A \cap B) = 0.2 + 0.3 - 0.4 = 0.1$		
	OR $P(A \cup B) = 0.2 + 0.3 - 0.06 = 0.44$	B1	
	(A and B are not independent because)		
	EITHER $0.1 \neq 0.06$ OR $0.4 \neq 0.44$	B1	
(b)(i)	$P(A \cap B)$		FT from (a)
	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	M1	M0 if independence assumed
	$=\frac{1}{3}$	A1	
	So $P(A' B) = \frac{2}{3}$	A1	
	3		
(••)	D(A + D') = D(A) + D(D') = D(A - D')	M1	MO if in doman damage accounted
(ii)	$P(A \cup B') = P(A) + P(B') - P(A \cap B')$		M0 if independence assumed
	$= P(A) + 1 - P(B) - \left(P(A) - P(A \cap B)\right)$	m1	
	$=\frac{4}{5}$		
	_ 5	A1	
2(a)	$E(X^{2}) = \operatorname{Var}(X) + (E(X))^{2}$	M1	
	= 104	A1	
		AI	
(b)	$\mathbf{E}(Y) = 2\mathbf{E}(X) + 3$	MI	
	= 23	M1 A1	
	$\operatorname{Var}(Y) = 4\operatorname{Var}(X)$	M1	
	= 16	A1	Award M0 for $2\times$, M1 for $4\times$
3 (a)	(4)(3)(2)		
		3.51.4.1	
	P(1 each col) = $\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} \times 6$ or $\frac{(1)(1)(1)}{9}$	M1A1	M1A0 if 6 omitted
	987 9		
	(3)		
	$=\frac{2}{7}$ (0.286)	A1	
(b)	$-\frac{1}{7}(0.200)$		
	P(3 same col) =		
	(4) (3)		
		M1A1	
	$\frac{4}{9} \times \frac{3}{9} \times \frac{2}{7} + \frac{3}{9} \times \frac{2}{9} \times \frac{1}{7}$ or $\frac{(3)}{(9)}$		
	$\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} + \frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \text{ or } \frac{\binom{4}{3} + \binom{3}{3}}{\binom{9}{3}}$		
	(3)		
	$=\frac{5}{84}$ (0.0595)	A1	
	$-\frac{1}{84}(0.0393)$		

Ques	Solution	Mark	Notes
4(a)(i)	$P(\text{at least 1 error}) = 1 - e^{-0.8}$	M1	M0 exactly 1, M1 more than 1
	= 0.551	A1	Accept the use of tables
(ii)	$P(3^{rd} \text{ page } 1^{st} \text{ error}) = (1 - 0.551)^2 \times 0.551$	M1	FT $0.449^2 \times \text{answer to (a)}$
(b)(i)	= 0.111	A1	
	$p_n = (e^{-0.8})^n$ = $e^{-0.8n}$	M1 A1	Accept 0.449 for $e^{-0.8}$ A1 can be earned later
(ii)	Consider $e^{-0.8n} < 0.001$	M1	Allow the use of =
	$-0.8n\log < \log 0.001$	A1	Allow the use of = Accept solutions using tables or
	giving $n > 8.63$	A1	evaluating powers of $e^{-0.8}$
	Therefore take $n = 9$	A1	
5(a)(i)	<i>X</i> is B(10,0.7)	B1	
(ii)	E(X) = 7	B1	
~ /	$SD(X) = \sqrt{10 \times 0.7 \times 0.3}$	M1	$\sqrt{210}$
	= 1.45	A1	Accept $\sqrt{2.1}, \frac{\sqrt{210}}{10}$
(iii)	Let Y = Number of games won by Brian so that		
	<i>Y</i> is B(10,0.3)	M1	M0 no working
	$P(X \ge 6) = P(Y \le 4)$	m1	Accept summing individual
	= 0.8497	A1	probabilities
(b)	Let G = number of games lasting more than 1 hour	D1	.:
	<i>G</i> is B(44,0.06) which is approx Po(2.64)	B 1	si
	$P(G>2) = 1 - e^{-2.64} \left(1 + 2.64 + \frac{2.64^2}{2} \right) = 0.492$	M1A1	M0 no working
6(a)	$E(X) = \frac{1}{54} \left(2 \times 2^2 + 3 \times 3^2 + 4 \times 4^2 + 5 \times 5^2 \right)$	M1	Allow MD for wrong rongo
	= 4.15 (112/27)	. 1	Allow MR for wrong range
	2, $1(2, 2, 2, 2, 2, 2, 2, 2)$, $(2, 2, 2, 2)$	A1	
	$E(X^{2}) = \frac{1}{54} \left(2^{2} \times 2^{2} + 3^{2} \times 3^{2} + 4^{2} \times 4^{2} + 5^{2} \times 5^{2} \right) (18.11.)$	M1A1 A1	
	$Var(X) = 18.11 4.1481^{2} = 0.904 (659/729)$		
(b)			
	The possible values are 4,5,5	B1	si
	$P(Sum = 14) = \frac{4^2 \times 5^2 \times 5^2}{54^3} \times 3$		
	51	M1A1	
	= 0.191	A1	Accept 0.19

Ques	Solution	Mark	Notes
7(a)(i)	$P(+) = 0.05 \times 0.96 + 0.95 \times 0.02$	M1A1	
	= 0.067	A1	
(ii)	0.05×0.96	DIDI	
	$P(disease +) = \frac{0.05 \times 0.96}{0.067}$	B1B1	FT denominator from (i)
	= 0.716 cao	B1	
(b)(i)	$P(2^{nd} +) = 0.716 \times 0.96 + (1 - 0.716) \times 0.02$	M1	FT from (a)
	= 0.693	A1	
(ii)	$P(disease 2^{nd} +) = \frac{0.716 \times 0.96}{0.693}$	M1	Accept
	= 0.992 cao (2304/2323)	A 1	0.05×0.96^2
		A1	$\frac{0.05 \times 0.96}{0.05 \times 0.96^2 + 0.95 \times 0.02^2}$
8(a)(i)	F(2) = 1	M1	
	so $12k = 1$ giving $k = \frac{1}{12}$	A1	Convincing
(ii)	Use of $F(x) = 0.95$ 12	M1	
	$x^4 - x^2 - 11.4 = 0$	A1	
	$x^2 = 3.913$	A1	
	x = 1.98	A1	
(iii)	$P(X < 1.25 X < 1.75) = \frac{F(1.25)}{F(1.75)}$	M1	
	$=\frac{1.25^4-1.25^2}{1.75^4-1.75^2}$	A1	
	$1.75^{2} - 1.75^{2}$ = 0.14		
	- 0.14	A1	
(b)(i)	f(x) = F'(x)	M1	M1 for knowing you have to differentiate
	$=rac{1}{6}(2x^3-x)$	A1	differentiate
(ii)			
	Use of $E\left(\sqrt{X}\right) = \int \sqrt{x} f(x) dx$	M1	FT from (b)(i) if answer between
	$=\frac{1}{6}\int\sqrt{x}(2x^3-x)\mathrm{d}x$	A1	1 and 2
	$=\frac{1}{6}\left[\frac{4x^{9/2}}{9}-\frac{2x^{5/2}}{5}\right]^{2}$	A1	
	$\begin{bmatrix} -6 \end{bmatrix} \begin{bmatrix} 9 \end{bmatrix} \begin{bmatrix} -5 \end{bmatrix}_{1}$		
	= 1.29	A1	

GCE Maths (S1) MS Summer 2017